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Conditions for the Equivalence of
the Chen and Yee FDTD Algorithms

Kurt L. Shlager, Student Member, IEEE, Scott L. Ray, Member, IEEE, James
G. Maloney, Member, IEEE, and Andrew F. Peterson, Senior Member, IEEE

Abstract— A two-dimensional dispersion analysis of the re-
cently proposed Chen Finite-Difference Time-Domain (FDTD)
algorithm is presented and its properties evaluated. The disper-
sion properties of this scheme vary with respect to propagation
angle, Courant stability factor, and the definition of numerical
characteristic impedance. These dispersion characteristics can
be used to identify parameters that make the Chen algorithm
equivalent to the Yee FDTD algorithm.

I. INTRODUCTION

ECENTLY, Chen et al. [1] proposed a new 3-D Finite-

Difference Time-Domain (FDTD) algorithm which was
constructed to be equivalent to Johns’ Symmetrical Condensed
Node Transmission-Line Matrix (SCN-TLM) method [2]. The
authors also proposed a 2-D FDTD algorithm equivalent to
the 2-D TLM shunt node formulation [3]. The equivalence
of Chen’s new FDTD algorithms to the classical Yee FDTD
algorithm and the various TLM formulations has been the
subject of recent debate [4]. Previous dispersion analysis has
shown an equivalence between Yee’s FDTD algorithm and
the shunt node TLM formulation under certain conditions
[5]. Any such equivalence depends on the choice of several
parameters, including the Courant stability factor and the
numerical characteristic impedance. In this note, we identify
the specific conditions under which the Chen and Yee FDTD
algorithms are equivalent.

An interesting aspect of Chen’s 3-D formulation is that
it does not reduce to his 2-D algorithm with an invariance
in one direction. Specifically, in his 2-D formulation, the
numerical characteristic impedance, Z nym, is defined such
that Z num = V2Z,, whereas in 3-D it is defined such that
Z num = Z,. (Z, = /£ is the intrinsic impedance of free
space.) In fact, the definition of Z nym is arbitrary, in the
sense that any value of Z nym = aZ, can provide a stable
time-marching algorithm. However, the dispersion properties
of the method are highly dependent on the choice of .

In this letter, the dispersion relation of the generalized 2-
D Chen FDTD algorithm is given, by leaving « as a free
parameter. Two specific cases are studied; the o = V2 case,
which is the 2-D formulation given in [1], and the case where
a = 1, which is a formulation where the Chen 3-D FDTD
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equations are reduced to a set of 2-D FDTD equations by
enforcing an invariance in one direction. From the dispersion
properties of each algorithm, equivalences with the classical
2-D Yee algorithm and with Johns’ TLM formulations will be
noted.

II. DISPERSION RELATION

Assuming a time harmonic solution to the generalized 2-
D Chen FDTD equations [1, egns (7)-(9) and (14)—(17) with
Z num = aZ,], for an isotropic, homogeneous, linear and
lossless medium, the dispersion relation in matrix form is
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In (1), the A, and B, are defined as

D,T'; — $Dy62e w442
Ay = T2 1Dz b
5, Dot = 3D

2 _ LD2,—jwlt
12 4_‘Dmeﬂ“’

The A, and B, are defined similarly. Other terms are defined
as

ke
D, = 2jsin(k,Az), 6, = 2jsin( ),

T, = e/“At/2 4 e=I9AY2 cog(k, Ax).
In (1), Az and Az are the grid spacings, At is the time step,
w is the angular frequency of the propagating wave, k, and

k., are the numerical wavenumbers in the x and z directions
respectively, and 7 = /—1.
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Fig 1 Phase velocity versus propagation angle for the various schemes.

The numerical phase velocity and grid dispersion per wave-
length are determined from the numerical wavenumbers k.,
and k, [6].

III. COMPARISONS

For all comparisons, the spatial grid is uniform (6 = Az =
Az), and the spatial grid increment is § = A,/10, where ),
is the free space wavelength. The Courant stability factor is
defined as s = cAt/é.

Fig. 1 shows a plot of the phase velocity, normalized to
the speed of light, versus propagation angle, ¢, for the 2-
D Chen algorithm for the two different choices of «. The
dots indicate the case when a = /2 at its Courant stability
limit, 5§ max = 1/\/5 Also shown in Fig. 1 is the phase
velocity for the Yee algorithm (solid line) at its stability limit of
s max = 1/ V2. Notice that both algorithms exhibit identical
phase velocity profiles and have the same Courant stability
limit. Thus, the Chen algorithm with o = /2 is said to be
identical to Yee’s algorithm at this Courant limit (as noted in
[6]). (However, this equivalence is only true at this value of
stability factor, s).

The dashed line in Fig. 1 represents the 2-D generalized
Chen algorithm evaluated with « = 1 at its stability limit,
Smax = 1 / 2. The Courant stability limit is not constant; it is
a function of the definition of « in the numerical characteristic
impedance. Furthermore, note that the dispersion properties
for the two choices of « are out of phase by 180°. The case
of & = /2 has zero dispersion (phase velocity = speed of
light) along the coordinate diagonals (& = 45°, 135°, etc.) and
maximum dispersion (phase velocity farthest from the speed
of light) along the coordinate axes ($ = 0°, 90°, 180°, etc.) at
its Courant limit, while the case of & = 1 has zero dispersion
along the coordinate axes, and maximum dispersion along the
coordinate diagonals at its Courant limit.

Fig. 1 also illustrates the equivalence between the Chen
algorithms and various TLM formulations. The 2-D Chen
algorithm with o = /2 exhibits the same angular dispersion
dependence as the 2-D shunt node TLM, while the 2-D
algorithm with « = 1 exhibits the same angular disper-

Yee .7 7

Max Dispersion Error (deg) /A

0 1 | 1 ! i

2.0 2.5 3.0 3.5
1 / (Stability factor)

4.0

Fig. 2.
schemes.

Maximum dispersion error versus stability factor for the various

sion dependence as the 2-D Symmetrical Condensed Node
TLM.

Fig. 2 shows a plot of the maximum dispersion error per
wavelength as a function of the reciprocal of the stability factor
for the two Chen schemes, @ = 1 and o = \/5 Also plotted for
comparison is the dispersion curve for the Yee algorithm. From
this curve, it is clear that not only does the Chen algorithm
with & = /2 have a lower Courant stability limit than the case
o = 1. but that the scheme with o = /2 has better dispersion
properties than the scheme operated at « = 1, when each is
operated at the same fixed Courant stability factor. Thus, the
choice of & = /2 would be preferable in an FDTD code.

IV. CONCLUSION

The 2-D Chen FDTD scheme with a = +/2 is equivalent to
the 2-D Yee FDTD scheme, but only at s = 1/1/2. The Chen
FDTD algorithm exhibits optimum performance at s =~ 0.408.
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