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Abstract— A two-dimensional dispersion analysis of the re-
cently proposed Chen Fhite-Difference T]me-Domain (FDTD)
algorithm is presented and its properties evaluated. The disper-

sion properties of thk scheme vary with respect to propagation
angle, Courant stability factor, and the definition of numerical
characteristic impedance. These dispersion characteristics can

be used to identify parameters that make the Chen algorithm
equivalent to the Yee FDTD algorithm.

I. INTRODUCTION

R ECENTLY, Chen et al. [1] proposed a new 3-D Finite-

Difference Time-Domain (FDTD) algorithm which was

constructed to be equivalent to Johns’ Symmetrical Condensed

Node Transmission-Line Matrix (SCN-TLM) method [2]. The

authors also proposed a 2-D FDTD algorithm equivalent to

the 2-D TLM shunt node formulation [3]. The equivalence

of Chen’s new FDTD algorithms to the classical Yee FDTD

algorithm and the various TLM formulations has been the

subject of recent debate [4]. Previous dispersion analysis has

shown an equivalence between Yee’s FDTD algorithm and

the shunt node TLM formulation under certain conditions

[5]. Any such equivalence depends on the choice of several

parameters, including the Courant stability factor and the

numerical characteristic impedance. In this note, we identify

the specific conditions under which the Chen and Yee FDTD

algorithms are equivalent.

An interesting aspect of Chen’s 3-D formulation is that

it does not reduce to his 2-D algorithm with an invariance

in one direction. Specifically, in his 2-D formulation, the

numerical characteristic impedance, Z num, is defined such

that Z num = WZO, whereas in 3-D it is defined such that

Z num = 20. (20 = W is the intrinsic impedance of free

space.) In fact, the definition of Z num is arbitrary, in the

sense that any value of Z num = aZO can provide a stable

time-marching algorithm. However, the dispersion properties

of the method are highly dependent on the choice of a.

In this letter, the dispersion relation of the generalized 2-

D Chen FDTD algorithm is given, by leaving a as a free

parameter. Two specific cases are studied; the a = W case,

which is the 2-D formulation given in [1], and the case where
~ = 1, which is a formulation where the Chen 3-D FDTD
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equations are reduced to a set of 2-D FDTD equations by

enforcing an invariance in one direction. From the dispersion

properties of each algorithm, equivalences with the classical

2-D Yee algorithm and with Johns’ TLM formulations will be

noted.

II. DISPERSION RELATION

Assuming a time harmonic solution to the generalized 2-

D Chen FDTD equations [1, eqns (7)--(9) and (14)–(17) with

Z num = aZO], for an isotropic, homogeneous, linear and

lossless medium, the dispersion relation in matrix form is

A –D E

–D B o ==o, (1)

EOC

where

()

w At
A=2jsin ~ – :(szBz + Sz~Z),

()w At
B = 2jsin ~ – as. B,,

()w At
C=2jsin ~ – asz Bz,

D = SZAZ,

E = SZAZ.

In (l), the A. and B% are defined as

Dzrz – ;Dz~:e-~~At/2
Az =

F2 – ~Ll~e-JwAt ‘z

The A= and B. are defined similarly. Other terms are defined

as

At At

“ = CG ‘Z=CG’
k. Ax

Dz = 2j sin(kzAz), & = ;zj sin(~),

FZ = e~~Atlz + e–~UAtj2 CoS(&.AX).

In (1), Ax and Az are the grid spacings, At is the time step,

w is the angular frequency of the propagating wave, kz and

kz are the numerical wavenumbers in the z and z directions

respectively, and j = @.
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Fig 1 Phase veloclty versus propagation angle for the various schemes.

The numerical phase velocity and grid dispersion per wave-

length are determined from the numerical wavenumbers kz

and kZ [6].

III. COMPARISONS

For all comparisons, the spatial grid is uniform (6 = Ax =

Az), and the spatial grid increment is 6 = &/10, where &

is the free space wavelength. The Courant stability factor is

defined as s = cAt/6.

Fig. 1 shows a plot of the phase velocity, normalized to

the speed of light, versus propagation angle, ~, for the 2-

D Chen algorithm for the two different choices of a. The

dots indicate the case when a = a at its Courant stability

limit, s max = l/v@. Also shown in Fig. 1 is the phase

velocity for the Yee algorithm (solid line) at its stability limit of

s max = 1/ fi. Notice that both algorithms exhibit identical

phase velocity profiles and have the same Courant stability

limit. Thus, the Chen algorithm with a = W is said to be

identical to Yee’s algorithm at this Courant limit (as noted in

[6]). (However, this equivalence is only true at this value of

stability factor, s).

The dashed line in Fig. 1 represents the 2-D generalized

Chen algorithm evaluated with a = 1 at its stability limit,

s max = 1/2. The Courant stability limit is not constant; it is

a function of the definition of a in the numerical characteristic

impedance. Furthermore, note that the dispersion properties

for the two choices of Q are out of phase by 180°. The case
of a = & has zero dispersion (phase velocity z speed of

light) along the coordinate diagonals (@ = 45°, 135°, etc.) and

maximum dispersion (phase velocity farthest from the speed

of light) along the coordinate axes (0 = 0°, 90°, 180°, etc.) at

its Courant limit, while the case of a = 1 has zero dispersion

along the coordinate axes, and maximum dispersion along the

coordinate diagonals at its Courant limit.

Fig. 1 also illustrates the equivalence between the Chen

algorithms and various TLM formulations. The 2-D Chen

algorithm with a = W exhibits the same angular dispersion

dependence as the 2-D shunt node TLM, while the 2-D

algorithm with a = 1 exhibits the same angular disper-
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Fig. 2. Maximum dispersion error versus stability factor for the various

schemes.

sion dependence as the 2-D Symmetrical Condensed Node

TLM.

Fig. 2 shows a plot of the maximum dispersion error per

wavelength as a function of the reciprocal of the stability factor

for the two Chen schemes, o = 1 and@ = W. Also plotted for

comparison is the dispersion curve for the Yee algorithm. From

this curve, it is clear that not only does the Chen algorithm

with a = W have a lower Courant stability limit than the case
~ = 1, but that the scheme with ~ = ~ has better dispersion

properties than the scheme operated at a = 1, when each is

operated at the same fixed Courant stability factor. Thus, the

choice of a = W would be preferable in an FDTD code.

IV. CONCLUSION

The 2-D Chen FDTD scheme with a = W is equivalent to

the 2-D Yee FDTD scheme, but only at s = 1/W. The Chen

FDTD algorithm exhibits optimum performance at s x 0.408.
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